

ABSTRACT

Plant Archives

Journal homepage: http://www.plantarchives.org doi link : https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.150

DETERMINATION OF THE SUITABILITY OF DESERT LANDS IN KARBALA PROVINCE FOR GROWING WHEAT AND MAIZE USING GEOSPATIAL TECHNOLOGIES

Ahmed Azhar Mohammed Ali *2 and Ayad Kadhim Ali 1

¹Department of Soil and Water Sciences, Faculty of Agriculture, University of Kufa, Najaf, Iraq. ²Directorate of Agriculture in Najaf, Ministry of Agriculture, Iraq.

* Corresponding author, E-mail address: ahmedazhar2013@gmail.com

A part of desert lands in Karbala province was selected to study the suitability of these lands for growing wheat and maize crops using geospatial technologies in an area of 3363 dunums. The information about soils in the studied area was collected and soil characteristics were estimated in 50cm depth of soil surface. Results of chemical and physical analyses showed that soil characteristics were suitable for agriculture use if a good management system is applied. The research showed that studied soils has neutral pH or slightly basic between (7-7.52), low salt content as the values of EC ranged between 1.05 to 2.4 ds/m, with sandy – loamy, loamy – sandy texture (LS – SL), low organic material content (0.15 - 0.56%), and ion exchange capacity from 3.04 to 7.52 cmolc/kg. Results also showed that the gypsum content was higher (8.76 - 23.6%) and the percentage of lime was 5.6 - 32%, while the exchangeable sodium percentage ranged between 6.30 to 7%. The suitability of soil values were calculated using the average traits method. The results of evaluation showed that studied area located within S1 and S2 about 5.8%, 38.46% and 94%, 61.54% of total area for wheat and maize crops respectively despite of factors (moderate, middle) which presented as (texture, organic carbon, cation exchangeable capacity CEC and lime) and (severe) as gypsum. *Keywords*: Land evaluation, desert, GIS system, wheat.

Introduction

Desert lands occupy wide areas of Iraq estimated in 168522 km² which is about 39% Of total area of the country (Central Statistical Organization, 1996). These lands distributed in a number of Iraqi provinces including Karbala in which the desert areas constitute a high percentage estimated in 85% of the total province area (5034 km²) and most of these areas occupy the geographic area from Najaf borders in the south to Al-Tar low earth in the west and from Karbala - Najaf road in the east. The geospatial borders of desert area of Karbala located between 32,50,10 latitudes North and 34.9,32 South, and between longitudes 39,8,43 West and 12,15,44 East (Al-Kuzaey, 2018). These vast areas has to be evaluated to demonstrate suitability for cultivation, as valuing lands for agricultural use is the essential link in the agricultural development process. Many studies have been conducted to evaluate lands for agricultural purposes, for instance, Al-Shafaey, (2010) used geographic models to evaluate the suitability of lands for growing wheat, barley and maize using the American system (NCCPI, 2008) and special geographic model SYS et al. (1993) in order to monitor changes in the nature of land use in Al-Salameyat irrigation project in Western Baghdad where he was concluded that salinity was the most determining factor for agriculture. Saremi et al. (2011) evaluated the suitability of soils to produce wheat, barley and maize in Iran using GIS system to indicate the suitability requirements of crops as well as the characteristics of the land using maps to increase accuracy, where the results showed that organic matter, rocks and calcium carbonate were the most important determinants of crop cultivation. While, Rosa et al. (2004) mentioned that

soil protection requires better use of agricultural land in terms of its planning and management, also the evaluation of land is consider an interaction between the sources of land and its surveys in order to use and manage land.

The most important soil characteristics are topography, soil and climate which considered essential in any evaluation and the main soil characteristics are texture, internal drainage, salinity, CEC, soil depth and pH (Ritung et al., 2007). Another study by ALbaji, (2012) reported that texture, salinity, alkalinity and drainage factor were the most important determinants of crop cultivation when he evaluated Hedajen region in West Iran. The evaluation of east Saedia project for climate factors and soil suitability and sunflower showed high values (S1) for growing wheat, barley, sunflower and moderate (S2) for maize (Mohammed, 2013). Using remote sensing technology is one of modern methods to study nature resources (water and soil), identifying their characteristics, locations and developing the necessary plans to take advantage from these resources, in addition to its applications in monitoring the natural phenomena that affecting agricultural development processes due to its distinctive, natural and temporal capabilities (Al-Musawy, 2001). Goswami et al. (2012) and Rabia, (2012) were used remote sensitivity tools to study wheat and other crops and it was effective in the distribution of crop and different lands.

Materials and Methods

The studied area is located in Karbala province beside Najaf borders and about 32km from city center. Geographical coordinates were N 409677 E 3585223, N 406690 E 3584074, N 407839 E 3581088 and N 410826 E 3582236 with a total area of 3363 dunums. The climate of this area characterized as a hot and dry in summer and cold rainy in winter with annual average of temperature 24.2° C, rainfall rate 96 mm, average relative humidity 43% and the rate of wind speed 2m/second. All these climate information was collected in a period from 1991-2019.

A survey method was used to collect 52 soil samples; the distance between each sample was 400m. Samples were reached by GIS system and taken by uker at 50cm depth. Physical characteristic (texture) was measured using hydrometer method which mentioned by Bouyoucos, (1962) after removing bind materials in soil, while the chemical characteristics were estimated as follows: EC in the extract of soil + water (1:1 soil: water) was estimated using Richards, (1954) procedure, pH was estimated following Mclean, (1982), calcium carbonate (lime) was estimated by measuring emitted CO₂ gas (Loeppert and Suareze, 1996), the organic matter was estimated by wet oxidation method (Walkely and Black) that mentioned in Jackson, (1958), gypsum was estimated through the precipitation by acetone then the electrical conductivity of the precipitate (Richards, 1954) and the CEC was estimated by titration with methylene blue (Savant, 1994).

The evaluation of suitability of soil for growing wheat and maize was determined according to SYS *et al.*, (1993) as follows:

 $L.S = (A + B + C + \dots + F) / Number of properties$

(A, B, C....) were presented soil characteristics, in addition to adopt geographic information system (GIS) to prepare suitability maps using V.10 Arg.Map program.

Results and Discussion

Results of physical and chemical analysis of soil characteristics (Table 1) in the studied area showed that neutral pH or slightly basic between (7-7.52), low salt content as the values of EC ranged between 1.05 to 2.4 ds/m, with sandy - loamy, loamy - sandy texture (LS - SL), low organic material content (0.15 - 0.56%), and ion exchange capacity from 3.04 to 7.52 cmolc/kg. Results also showed that the gypsum content was higher (8.76 - 23.6 %) and the percentage of lime was 5.6 - 32 %, while the exchangeable sodium percentage ranged between 6.30 to 7%. The suitability of soil characteristics in the studied area was evaluated for growing wheat crop and results showed that depth trait was recorded 100% suitability in all samples and this trait is not determinants of crop cultivation (Table 2). While texture trait was recorded 50% suitability in all tested samples and then considered as moderate determinants of agriculture. Mineral carbonate trait was recorded 90 - 100% suitability in all samples except for (4, 16 and 17) samples which recorded 80% and this confirm that mineral carbonate considered as a determinants of agriculture in all studied

areas and as moderate determinants in (4, 16 and 17) samples. Cation exchange capacity (CEC) trait was recorded 70% suitability and considered as moderate determinants of agriculture. The organic carbon recorded 75% in all samples except for (31) point which recorded 85% suitability. Whereas, EC, ESP and rocks traits were recorded 100% and these traits are not determinants of crop cultivation, while regression trait was recorded 99.5 - 100% suitability and this trait is not determinants of crop cultivation. Calcium sulfate (gypsum) trait was recorded 80% suitability in (43, 44) samples and then considered as moderate determinants of agriculture, while (5, 7, 27, 30, 36, 39, 42, 45 and 51) samples were recorded 50% suitability and also considered as moderate determinants, and 25% of suitability recorded for (1, 4, 8, 26, 29, 37, 38 and 52) samples which considered a sever determinants of agriculture. According to evaluation above soil characteristics in the studied area were classified to S1 (high suitability) with 5.8% of total studied area, S2 (moderate suitability) with 94.2% of total studied area (Fig 1).

The suitability of soil characteristics in the studied area was evaluated for growing maize crop and results showed that depth trait was recorded 100% suitability in all samples and this trait is not determinants of crop cultivation (Table 3). While texture trait was recorded 75% suitability in all tested samples and then considered as moderate determinants of agriculture. Mineral carbonate trait was recorded 90 - 100% suitability in all samples except for (4, 16 and 17) samples which recorded 80% and this confirm that mineral carbonate considered as a determinants of agriculture in all studied areas and as moderate determinants in (4, 16 and 17) samples. Cation exchange capacity (CEC) trait was recorded 50% suitability and considered as moderate determinants of agriculture. The organic carbon recorded 75% in all samples except for (31) point which recorded 85% suitability. Whereas, EC, ESP and rocks traits were recorded 100% and these traits are not determinants of crop cultivation, while regression trait was recorded 99.5 - 100% suitability and this trait is not determinants of crop cultivation. Calcium sulfate (gypsum) trait was recorded 80% suitability in (43, 44) samples and then considered as moderate determinants of agriculture, while (5, 7, 27, 30, 36, 39, 42, 45 and 51) samples were recorded 50% suitability and also considered as moderate determinants, and 25% of suitability recorded for (1, 4, 8, 26, 29, 37, 38 and 52) samples which considered a sever determinants of agriculture. According to the evaluation above soil characteristics in the studied area were classified to S1 (high suitability) with 38.46% of total studied area, S2 (moderate suitability) with 61.54% of total studied area (Fig 2).

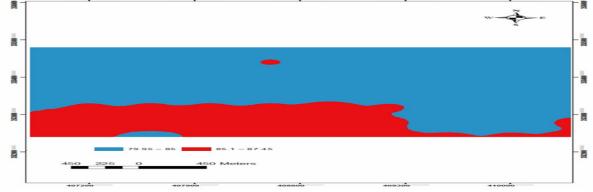


Fig. 1 : Shows the suitability of soils in the studied area to growing wheat crop

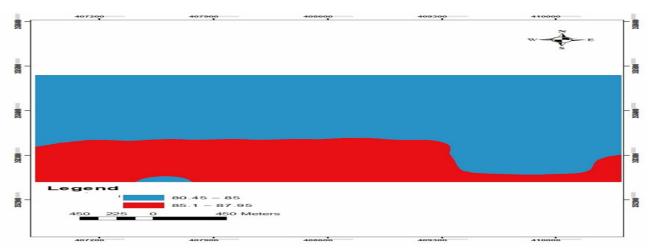


Fig. 2 : Shows the suitability of soils in the studied area to growing maize crop

Table 1 : Chemical and physical analysis of studied area soils.

1 auto		nenneai	anu	physical	anary	515 01 5	luuluu	area sor	15.					1
ESP %	Lime %	Gypsum %	0.M %	CEC cmol/kg	Clay gm/kg	Loamy gm/kg	Sand gm/kg	Texture	Rocks %	EC d.s/m	РН	У	x	Point number
6.32	9.2	22.36	0.23	6.71	100	100	800	LS	0	1.99	7.35	3584800	409600	1
6.32	16.8	22.36	0.19	3.46	100	100	800	LS	2	1.766	7.03	3584800	409200	2
6.44	24.4	21.98	0.23	3.36	60	120	820	LS	1	1.79	7.01	3584800	408800	3
6.56	32	21.6	0.27	3.27	80	160	760	SL	0	1.814	7	3584400	409600	4
6.57	29.6	19.32	0.24	3.65	60	80	860	LS	0	1.076	7.2	3584400	409200	5
6.59	27.2	17.04	0.21	3.04	80	120	800	LS	0	1.339	7.4	3584400	408800	6
6.47	17.2	19.32	0.18	3.32	96	64	840	LS	2	1.368	7.4	3584400	408400	7
6.35	7.2	21.6	0.15	3.6	100	80	820	LS	0	1.397	7.42	3584400	408000	8
6.68	13.2	21.2	0.18	3.41	96	104	800	LS	1	1.66	7.33	3584400	407600	9
7.01	19.2	21.6	0.22	3.23	60	80	860	LS	0	1.935	7.25	3584000	410000	10
6.7	19.6	22.3	0.2	3.19	116	64	820	LS	0	1.66	7.17	3584000	409600	11
6.4	20	23.6	0.22	3.15	80	140	780	LS	0	2.4	7.09	3584000	409200	12
6.53	22.4	22.6	0.27	3.74	100	100	800	LS	1	2.05	7.14	3584000	408800	13
6.67	24.8	21.6	0.33	4.34	80	100	820	LS	1	1.719	7.11	3584000	408400	14
6.6	28.4	21.02	0.35	4.43	60	80	860	LS	0	1.947	7.31	3584000	408000	15
6.59	30.5	20.68	0.36	5.97	80	100	820	LS	1	1.5615	7.41	3584000	407600	16
6.56	32	20.44	0.37	7.52	60	120	820	LS	0	1.176	7.52	3584000	407200	17
6.69	22.6	22	0.31	4.2	60	120	820	LS	0	1.28	7.45	3584000	406800	18
6.7	12.8	23.6	0.22	3.78	60	140	800	LS	0	1.376	7.43	3583600	410000	19
6.57	11.4	22.1	0.25	3.98	60	80	860	LS	0	1.05	7.4	3583600	409600	20
6.46	9.6	23.6	0.28	4.16	96	64	840	LS	0	1.725	7.24	3583600	409200	21
6.38	10.4	22.47	0.24	3.88	80	100	820	LS	2	1.66	7.23	3583600	408800	22
6.3	11.2	21.34	0.2	3.6	96	64	840	LS	1	1.81	7.22	3583600	408400	23
6.32	15.6	21.04	0.27	4.16	60	80	860	LS	1	1.62	7.27	3583600	408000	24
6.33	20	20.74	0.34	4.72	96	64	840	LS	2	1.644	7.32	3583600	407600	25
6.37	20.4	20.14	0.28	4.03	116	84	800	LS	1	1.9	7.39	3583600	407200	26
6.42	20.8	19.54	0.22	3.34	76	64	860	LS	0	1.161	7.46	3583200	410400	27
6.42	15.6	20.67	0.23	3.27	100	100	800	LS	0	1.177	7.34	3583200	410000	28
6.43	10.4	21.8	0.26	3.22	96	64	840	LS	0	1.194	7.22	3583200	409600	29
6.39	15.3	16.22	0.27	3.78	80	100	820	LS	0	1.94	7.1	3583200	409200	30
6.47	17.7	13.43	0.56	4.1	80	100	820	LS	0	1.35	7.3	3583200	408800	31
6.36	20	10.64	0.29	4.34	96	64	840	LS	0	1.68	7.1	3583200	408400	32
6.7	18.2	12.5	0.24	3.75	96	64	840	LS	1	1.96	7.24	3583200	408000	33
6.66	17.5	13.5	0.21	3.45	96	64	840	LS	1	1.6	7.12	3583200	407600	34
6.62	16.8	14.44	0.18	3.15	96	44	860	LS	1	1.234	7.23	3583200	407200	35
6.72	16	18.5	0.24	3.41	96	104	800	LS	1	1.447	7.38	3582800	410400	36
6.54	14.8	20.3	0.23	3.6	116	84	800	LS	0	1.31	7.23	3582800	410000	37
6.35	13.6	22 16.4	0.21	3.78	116 116	64	820 860	LS LS	0	1.167 1.56	7.35	3582800	409600	38
6.41	12.8		0.23	3.47		24			0		7.28	3582800	409200	<u>39</u>
6.44	12.4 12.2	13.53 12.1	0.23	3.31 3.23	96 76	64 64	840 860	LS LS	0	1.76 1.85	7.32	3582800 3582800	408800 408400	40
6.45 6.45	12.2	12.1	0.26	4.15	76 96	64 64	860	LS	2	1.85	7.26	3582800	408400	41 42
6.66	12	9.7	0.24	4.15 3.53	96 96	64 84	840	LS	2	1.953	7.13		408000	42 43
		9.7		3.55	96 116	24	820	LS	1		7.13	3582800 3582800	407800	43 44
6.77 6.3	20.8 5.6	8.76 11.34	0.28	3.9	96	84	800	LS	1	1.18 1.685	7.25	3582800	407200	44 45
6.63	9.5	11.34	0.3	3.32	96 96	84	820	LS	1	1.685	7.34	3582400	410400	45
6.79	9.5	12.4	0.29	3.32	96 116	84	820	LS	1	1.45	7.34	3582400	409600	40
6.95	13.6	12.89	0.31	3.27	116	64	800	LS	0	1.34	7.38	3582400	409000	47
6.79	11.4	13.48	0.27	3.7	116	24	820	LS	0	1.212	7.38	3582400	409200	48
6.56	9.2	13.9	0.32	4.27	116	24	860	LS	1	2.11	7.41	3582400	408800	49 50
6.49	9.2	17.43	0.33	4.27	116	84	800	LS	1	1.8	7.14	3582400	408400	50
6.4	16.8	20.42	0.28	4.44	116	84	800	LS	1	1.708	7.14	3582400	408000	51
0.4	10.0	20.42	0.22	4.44	110	04	000	டல	1	1.700	1.24	5562400	+07000	54

Table 2. The classification of suitability lands for growing whea	Table 2. The	classification	of suitability	lands for	growing wheat
--	--------------	----------------	----------------	-----------	---------------

Table 2.	The classification of suitability lands for growing wheat.											
Suitability	Score	Gypsum	Slope	ESP	EC	Organic Carbon	Apparent CEC	Lime	Texture	Coarse Fragment	Soil Depth	SMU
S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	1
S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	2
S2	80.95	25	99.5	100.00	100.00	75	70	90.00	50	100	100	3
S2	79.95	25	99.5	100.00	100.00	75	70	80.00	50	100	100	4
S2	83.45	50	99.5	100.00	100.00	75	70	90.00	50	100	100	5
S2	83.45	50	99.5	100.00	100.00	75	70	90.00	50	100	100	6
S2	84.45	50	99.5	100.00	100.00	75	70	100.00	50	100	100	7
S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	8
S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	9
S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	10
S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	11
S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	12
S2	80.95	25	99.5	100.00	100.00	75	70	90.00	50	100	100	13
S2	80.95	25	99.5	100.00	100.00	75	70	90.00	50	100	100	14
S2	80.95	25	99.5	100.00	100.00	75	70	90.00	50	100	100	15
S2	79.95	25	99.5	100.00	100.00	75	70	80.00	50	100	100	16
\$2	79.95	25	99.5	100.00	100.00	75	70	80.00	50	100	100	17
\$2 \$2	80.95	25	99.5	100.00	100.00	75	70	90.00	50	100	100	18
S2 S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	19
S2 S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	20
S2 S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	20
\$2 \$2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	21
S2 S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	22
S2 S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	23
\$2 \$2	81.95	25	99.5 99.5	100.00	100.00	75	70	100.00	50	100	100	24
S2 S2	80.95	25	99.5 99.5	100.00	100.00	75	70	90.00	50	100	100	26
<u>S2</u> S2	83.45	50	99.5 99.5	100.00	100.00	75	70	90.00	50	100	100	20
<u>S2</u> S2	81.95	25	99.5 99.5	100.00	100.00	75	70	100.00	50	100	100	27
S2 S2	79.95	25	99.5 99.5	100.00	100.00	75	70	100.00	50	80	100	28
	84.50	50							50			30
S2 S1		50	100 99.5	100.00	100.00	75 85	70 70	100.00	50	100	100	30
	85.45			100.00	100.00			100.00		100	100	
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	32
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	33
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	34
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	35
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	36
S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	37
S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	38
S2	84.50	50	100	100.00		75	70	100.00	50	100	100	39
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	40
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	41
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	42
S1	87.45	80	99.5	100.00	100.00	75	70	100.00	50	100	100	43
S1	86.45	80	99.5	100.00	100.00	75	70	90.00	50	100	100	44
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	45
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	46
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	47
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	48
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	49
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	50
S2	84.50	50	100	100.00	100.00	75	70	100.00	50	100	100	51
S2	81.95	25	99.5	100.00	100.00	75	70	100.00	50	100	100	52

Table 3 : The classification of suitability lands for growing maize.

Suitability	Score	Gypsum	SLOPE	ESP	EC	Organic Carbon	Apparent CEC	CaCO ₃	Texture	Coarse Fragment	Soil Depth	SMU
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	1
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	2
S2	81.45	25	99.5	100.00	100.00	75.00	50	90.00	75	100	100	3
S2	80.45	25	99.5	100.00	100.00	75.00	50	80.00	75	100	100	4
S2	83.95	50	99.5	100.00	100.00	75.00	50	90.00	75	100	100	5
S2	83.95	50	99.5	100.00	100.00	75.00	50	90.00	75	100	100	6
S2	83.95	50	99.5	100.00	100.00	75.00	50	90.00	75	100	100	7
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	8

S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	9
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	10
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	11
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	12
S2	81.45	25	99.5	100.00	100.00	75.00	50	90.00	75	100	100	13
S2	81.45	25	99.5	100.00	100.00	75.00	50	90.00	75	100	100	14
S2	81.45	25	99.5	100.00	100.00	75.00	50	90.00	75	100	100	15
S2	80.45	25	99.5	100.00	100.00	75.00	50	80.00	75	100	100	16
S2	80.45	25	99.5	100.00	100.00	75.00	50	80.00	75	100	100	17
S2	81.45	25	99.5	100.00	100.00	75.00	50	90.00	75	100	100	18
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	19
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	20
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	21
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	22
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	23
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	24
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	25
S2	81.45	25	99.5	100.00	100.00	75.00	50	90.00	75	100	100	26
S2	83.95	50	99.5	100.00	100.00	75.00	50	90.00	75	100	100	27
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	28
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	29
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	30
S1	85.95	50	99.5	100.00	100.00	85.00	50	100.00	75	100	100	31
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	32
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	33
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	34
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	35
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	36
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	37
S2	82.45	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	38
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	39
S 1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	40
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	41
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	42
S1	87.95	80	99.5	100.00	100.00	75.00	50	100.00	75	100	100	43
S1	86.95	80	99.5	100.00	100.00	75.00	50	90.00	75	100	100	44
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	45
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	46
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	47
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	48
S1	850.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	49
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	50
S1	85.00	50	100	100.00	100.00	75.00	50	100.00	75	100	100	51
S2	824.50	25	99.5	100.00	100.00	75.00	50	100.00	75	100	100	52

References

- Albaji, M.; Papan, P.; Hosseinzadeh M. and Barani S. (2012). Evaluation of land Suitability for principal crops in the hendijanregion. International Journal of Modern Agriculture, Volume 1: 24-32.
- Al-Kuzaey, A.K.J. (2018). Geographic evaluation of water needs of wheat crop in desert region in Kabala province. Master thesis, College of Education for Human Sciences, University of Karbala. Iraq.
- Al-Musawy, H.H. (2001). The use of remote sensing technology to survey and classify soils in lands around lack Milh. PhD thesis, Department of soil, Faculty of Agriculture, University of Baghdad.
- Al-Shafaey, W.M.K. (2010). The using of geographic information system and remote sensing to evaluate lands in the middle of Iraqi alluvial plain. Master thesis, Faculty of Agriculture, University of Baghdad.
- Bouyoucos, G.J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54(5): 464-465.

- Central Statistical Organization (1996). Ministry of Planning, Baghdad, Iraqi.
- Goswami, S.B.; Saxena, A. and Bairagi, G.D. (2012). Remote sensing and GIS based wheat crop acreage estimation of Indore district, M.P.
- Jackson, M.L. (1958). Soil chemical analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey.
- Loeppert, R.H. and Suareze, D.L. (1996). Method of soil analysis part. 3 chemical methods SSSA Bok series No.5 Soil.Sci.Soc.Am. and Am. Soc. Agron. 677.3. Segos Rd, Madison Wisconsis 537711, USA.
- Jaradat, A.A. (2002). Agriculture in Iraq department of state middleast working group on agriculture Washington D.c. USA.
- Leoppert, R.H. and Suarez, D.L. (1996). Carbonate and gypsum. Methods of soil Analysis: Part3. Chemical Methods, 5: 437-474.
- McLean, E.O. (1982). Soil ph and lime requirement. P199-224. In AL Page *et al.*(ed) Methods of soil analysis. Part 2. Agron. Monogr. 9. ASA and SSSA, Madison, WI.

- Richards, L.A. (1954). Diagnosis and improvement of saline and alkali soils. U.S. Dep. Agric. Handb. No. 60.
- Ritung, S.W.; Agus, F. and Hidayat, H. (2007). Indonesian soil research institute and world agroforestry Centre.
- Rosa, D.; Mayal, F.; Diaz-pereira, E. and Fernandez, M. (2004). A land evaluation decision support system (Micro LEIS DSS) for agricultural soil protection with special reference to the editerranean region Environmental modelling and software, 19: 929-942.
- Savant, N.K. (1994). Simplified methylene blue method for rapid determination of cation exchange capacity of mineral soils. Communications in soil science and plant analysis 25(19-20): 3357-3364.
- Sys, I.C.; Van Ranst, B.; Debaveye, J.; and Beernaet, F. (1993). Land Evaluation. Part III, Crop Requirements, Agricultural Publication No. 7, General Administration for Development Cooperation, Brussels, Belgium.